Joint Rapid Airfield Construction (JRAC)

Dr. Gary L. Anderton U.S. Army Engineer Research and Development Center

Program Objective

The Joint Rapid Airfield Construction program will develop materials and techniques for rapidly upgrading existing or constructing new contingency airfields in-theater with a low logistical footprint. From the airfield site assessment, site selection, construction, soil stabilization, and even through the repair and maintenance stages, ...

JRAC will transform the U.S. military's approach to rapid contingency airfield engineering.

Site Selection

OBJECTIVE

Provide decision aids to rank and select sites for contingency airfields based on engineering effort, mission suitability, pavement design and construction requirements, and airfield performance under traffic.

Material Data

Papid Soil Descriptor Database												
USCS Classification		Atterbergs		GSD	Field Properties							
Name	Description	LL (%)	PI (%)	D10 (mm)	w (%)	CBR	γ_d (pcf)					
GW	well-graded gravel	8	5	0.4	4	>100	135					
SP	poorly-graded sand	8	6	0.25	4	95	105					
SM	silty-sand with clay	15	8	0.05	12	85	99					
CL	low plasticity grey clay	25	15	0.002	22	89	102					
СН	fat black clay	67	42	<0.001	31	78	92					

Performance Simulation

Enhanced Construction Technology

EDA

OBJECTIVE

Increase overall design and construction productivity with reduced logistical footprint.

Integrated Design and Construction Planning

Expedient Construction

Rapid Quality Control

GPS Instrumentation

Soil Strength

Soil Density

Rapid Stabilization

OBJECTIVE

Reduce time and increase strength/durability for airfield stabilization.

Chemical Additives

Acids

Enzymes

Polymers

Tree Resins

Petroleum Emulsions

Lignosulfonates

Mechanical Stabilization

Mat Systems

Geofibers

Geocells

AM-2 Aluminum Mat

DURABASE (Heavy)

Fiberglass (Light)

Next-Generation Composite Mats

FY03 Major Activities

- Stabilized Soil Test Section
- Rapid MOG Enhancement Test Sections
- CRREL Stabilization Test Section
- Enhanced Equipment Evaluations
- Evaluation and Development of QC Tools
- Evaluation of Rapid Assessment Tools
- Select FY04 Demo Site

Test Facility at ERDC Vicksburg

HVS Mark IV in CRREL Frost Effects Research Facility

Site Selection - Test Section

Enhanced Construction - Test Section

Compaction

QC/QA Technologies

Pulverizer Technology

Enhanced Construction Systems

Stabilized Soils - Test Section

OBJECTIVE

Provide Rapid Solution for Soil Stabilization in Silty Sand Soil with C-130 Wheel Loads

Site Preparation

Stabilization and Compaction

Application of Traffic

C-130 Tire

FY04 Demo

Objective – Construct C-130 "contingency" airfield using realistic scenarios and resources with JRAC technologies. The intent is to partnership with a scheduled exercise. Demo will include:

- → Site Selection and Assessment Demo
- → C-130 Airfield Construction Demo
- → Traffic and Performance Evaluation

Operational Issues – Jeff Edmonds (MANSCEN)
Technical Issues – Gary Anderton - (ERDC)

Operation Rhino

Planning for Operation Rhino...included numerous engineering issues, not the least of which was evaluating the unexplored airstrip.

One thing the Rangers did not bring with them was their own engineer... "We wanted as many shooters as possible."

> (Tom Sawyer, "High-Tech Tools at FOB Rhino", Engineering News Record, Feb. 2002)

Air Force Photo U.S.

What if Operation Rhino had JRAC?

Rhino Problems

"The most important intelligence we brought back was really the condition of the runway...That was something we could not tell until we were actually on the ground and sampled it."

JRAC Site Selection Solutions

Satellite imagery and geospatial data used for site selection and assessment

		Rapid Soil Descriptor Database											
	US	CS Classification	Atterbergs		GSD	Field Properties							
	Name	Description	LL (%)	PI (%)	D10 (mm)	w (%)	CBR	γ/d (pcf					
	GW	well-graded gravel	8	5	0.4	4	130	135					
	SP	poorly-graded sand	8	6	0.25	4	95	105					
	SM	silty-sand with clay	15	8	0.05	12	85	99					
X.	CL	low plasticity grey clay	25	15	0.002	22	89	102					
	СН	fat black clay	67	42	<0.001	31	78	92					

Worldwide Materials Database used to assess potential sites and to project construction/stabilization requirements

Site selection decision-aid which incorporates site conditions with known traffic implications to reliably predict airfield performance

"By the time we left, we were absolutely certain it would support C-130s and cautiously optimistic that it would support C-17s."

> Maj. Robert Whalen U.S. Army 3rd Ranger Battalion 75th Ranger Regiment (ENR, 2002)

What if Operation Rhino had JRAC?

Rhino Problems

If...runway maintenance fell behind, it could have interrupted the airlift and compromised the mission.

The machines worked the runway from Integrated digital terrain data connects remote design and rapid construction sunup to sundown and between landings at night.

With more than 6000 ft. of runway, the Seabees were not exactly gaining. GPS and laser controls increase earthmoving efficiency and allow for night operations

JRAC Expedient Construction Solutions

(ENR, 2002)

What if Operation Rhino had JRAC?

(ENR, 2002)

Rhino Problems

During the month the base was in use, heavy transport aircraft, including the C-17s, arrived nightly. Their landing gear gouged huge gashes into the unpaved surface.

Helicopter pilots throughout the theater of operations are plagued by blinding brown-outs as they return, resulting in hard landings and broken gear. Some crashes resulted in injuries and fatalities.

JRAC Soil Stabilization Solutions

Through laboratory analyses, test sections, and field trials, JRAC will match the right stabilizer with the right soil to increase airfield life

JRAC researchers helped address the helipad dust problem through participation in Operation Brown-Out Exercise at Ft. Campbell, KY

Technology Gaps

• JRAC Potential Work Units (Currently Unfunded):

- → Rapid PCC Slab Replacement
- Solution Contingency Airfield Dust and Foreign Object Damage Abatement
- → Design and Construction of Super-Smooth Runways for Unmanned Aerial Vehicles
- → Soil Stabilization of Cohesive Soils
- → Soil Stabilization of Granular Soils
- → Hydrology and Drainage of Contingency Airfields

Joint Rapid Airfield Construction

• JRAC Website

- → https://jrac.erdc.usace.army.mil
- → Accessible by all .mil domains
- → Latest Information on Testing, Equipment, Construction Procedures
- → JRAC Information on Meetings, Progress, etc...
- → Current JRAC issues addressed through Tele-Engineering Operations Center (TEOC) – (601)634-2735 (Comm) or 446-2735 (DSN) unsecured NIPR: TEOC@usace.army.mil SIPR: TEOC@TeleEngineering.army.smil.mil

Joint Rapid Airfield Construction

Supports Contingency Airfield Needs. . .

...Today

... and Beyond